ANALISIS DATA PENELITIAN
Untuk menjawab tujuan penelitian
yang ingin dicapai dilakukan analisis data
dengan menggunakan program SPSS . Langkah-langkah analisis data dilakukan
secara bertahap, yaitu analisis univariat, analisis bivariat dan analisis multivariat.
dengan menggunakan program SPSS . Langkah-langkah analisis data dilakukan
secara bertahap, yaitu analisis univariat, analisis bivariat dan analisis multivariat.
Analisis Univariat
Analisis univariat dilakukan untuk
memperoleh gambaran setiap variabel, distribusi frekuensi berbagai variabel
yang diteliti baik variabel dependen maupun variabel independen. Dengan melihat
distribusi frekuensi dapat diketahui deskripsi masing-masing variabel dalam
penelitian .
Analisis Bivariat
Untuk mengetahui ada tidaknya
hubungan antara variabel independen (katagorik) dengan variabel independen
(katagorik) dapat digunakan Uji Kai Kuadrat aatau Chi Square.
Untuk mengetahui ada tidaknya
hubungan variabel independen (numerik) dengan variabel dependen (katagorik)
dapat digunakan uji T atau Uji Mann-Whitney U. Untuk menentukan kemaknaan hasil
perhitungan statistik digunakan batas kemaknaan 0,05. Dengan demikian jika p
value < 0,05 maka hasil perhitungan secara statistik bermakna dan jika p ≥
0,05 maka hasil perhitungan statistik tidak bermakna. Untuk mengetahui besar/kekuatan
hubungan antara variabel dependen dengan variabel independen digunakan
Prevalence Ratio (PR) atau OR (odd ratio) dengan 95% CI (Confidence Interval).
Uji Chi Square
Untuk menguji hipotesis hubungan variabel independen (kategorik) dengan
variabel dependen (kategorik) menggunakan uji Chi Square. Proses pengujian Chi
Square adalah membandingkan frekuensi yang terjadi (observasi) dengan frekuensi harapan (ekspektasi). Bila nilai frekuensi observasi dengan nilai frekuensi harapan sama, maka dikatakan tidak ada perbedaan yang bermakna (signifikan). Sebaliknya bila nilai frekuensi harapan berbeda, maka dikatakan ada perbedaan yang bermakna.
Untuk menguji hipotesis hubungan variabel independen (kategorik) dengan
variabel dependen (kategorik) menggunakan uji Chi Square. Proses pengujian Chi
Square adalah membandingkan frekuensi yang terjadi (observasi) dengan frekuensi harapan (ekspektasi). Bila nilai frekuensi observasi dengan nilai frekuensi harapan sama, maka dikatakan tidak ada perbedaan yang bermakna (signifikan). Sebaliknya bila nilai frekuensi harapan berbeda, maka dikatakan ada perbedaan yang bermakna.
Uji Chi Square sangat baik digunakan
untuk tabel dengan derajat kebebasan
(df) yang besar. Bila tabel yang digunakan 2 x 2 dan tidak ada nilai E < 5, maka uji
yang dipakai sebaiknya Continuity Correction. Sedangkan bila tabel 2 x 2 dijumpai nilai E < 5, maka uji yang dipakai adalah Fisher Exact Test (Hastono, 2007).
Keputusan yang diambil dari hasil Chi Square adalah:
a. Bila nilai p < α, Ho ditolak, berarti data sampel mendukung adanya perbedaan
yang bermakna (signifikan)
b. Bila nilai p ≥ α, Ho gagal di tolak, berarti data sampel tidak mendukung adanya perbedaan yang bermakna (tidak signifikan)
Hasil uji Chi Square hanya dapat menyimpulkan ada/tidaknya perbedaan proporsi antar kelompok atau dengan kata lain hanya dapat menyimpulkan
ada/tidaknya hubungan dua variabel kategorik. Dengan demikian uji Chi Square
tidak dapat menjelaskan derajat hubungan, dalam hal ini uji Chi Square tidak mengetahui kelompok mana yang memiliki risiko lebih besar dibandingkan kelompok lain (Hastono, 2007).
(df) yang besar. Bila tabel yang digunakan 2 x 2 dan tidak ada nilai E < 5, maka uji
yang dipakai sebaiknya Continuity Correction. Sedangkan bila tabel 2 x 2 dijumpai nilai E < 5, maka uji yang dipakai adalah Fisher Exact Test (Hastono, 2007).
Keputusan yang diambil dari hasil Chi Square adalah:
a. Bila nilai p < α, Ho ditolak, berarti data sampel mendukung adanya perbedaan
yang bermakna (signifikan)
b. Bila nilai p ≥ α, Ho gagal di tolak, berarti data sampel tidak mendukung adanya perbedaan yang bermakna (tidak signifikan)
Hasil uji Chi Square hanya dapat menyimpulkan ada/tidaknya perbedaan proporsi antar kelompok atau dengan kata lain hanya dapat menyimpulkan
ada/tidaknya hubungan dua variabel kategorik. Dengan demikian uji Chi Square
tidak dapat menjelaskan derajat hubungan, dalam hal ini uji Chi Square tidak mengetahui kelompok mana yang memiliki risiko lebih besar dibandingkan kelompok lain (Hastono, 2007).
Uji Mann-Whitney U
Uji ini merupakan alternatif lain
untuk T test parametrik yang digunakan untuk melihat tingkat kemaknaan pada
data numerik yang berdistribusi tidak normal
dengan data kategorik. Untuk mengetahui suatu data berdistribusi normal atau tidak, dilakukan analisis sebagai berikut:
1. Dilihat dari grafik histogram dan kurva normal, bila bentuknya menyerupai bel
shape, berarti distribusi normal.
2. Menggunakan nilai Skewness dan standar errornya, bila nilai Skewness dibagi
standar errornya menghasilkan angka ≤ 2, maka distribusinya normal.
dengan data kategorik. Untuk mengetahui suatu data berdistribusi normal atau tidak, dilakukan analisis sebagai berikut:
1. Dilihat dari grafik histogram dan kurva normal, bila bentuknya menyerupai bel
shape, berarti distribusi normal.
2. Menggunakan nilai Skewness dan standar errornya, bila nilai Skewness dibagi
standar errornya menghasilkan angka ≤ 2, maka distribusinya normal.
3. Uji Kolmogorov-Smirnov, bila
hasil uji signifikan (p value ≥ 0,05) maka
distribusi normal.
(Hastono, 2007)
distribusi normal.
(Hastono, 2007)
Analisis statistik dari uji
Mann-Whitney U adalah:
a. Bila nilai p < α, Ho ditolak, berarti ada hubungan yang bermakna
b. Bila nilai p ≥ α, Ho gagal di tolak, berarti tidak ada hubungan yang bermakna
a. Bila nilai p < α, Ho ditolak, berarti ada hubungan yang bermakna
b. Bila nilai p ≥ α, Ho gagal di tolak, berarti tidak ada hubungan yang bermakna
Analisis Multivariat
Analisis multivariat dapat dilakukan
dengan menggunakan analisis regresi logistik
ganda. Analisis multivariat dilakukan untuk mengetahui:
1. Variabel independen mana yang mempunyai pengaruh paling besar terhadap
variabel dependen.
2. Mengetahui apakah hubungan variabel independen dengan variabel dependen dipengaruhi oleh variabel lain atau tidak.
3. Bentuk hubungan beberapa variabel independen dengan variabel dependen
apakah berhubungan langsung atau pengaruh tidak langsung.
ganda. Analisis multivariat dilakukan untuk mengetahui:
1. Variabel independen mana yang mempunyai pengaruh paling besar terhadap
variabel dependen.
2. Mengetahui apakah hubungan variabel independen dengan variabel dependen dipengaruhi oleh variabel lain atau tidak.
3. Bentuk hubungan beberapa variabel independen dengan variabel dependen
apakah berhubungan langsung atau pengaruh tidak langsung.
Uji ini mampu memasukkan beberapa
variabel independen dalam satu model.
Langkah pertama adalah menentukan variabel yang masuk kriteria sebagai kandidat model yaitu variabel dengan nilai p < 0,25 dan nilai 95 % CI di atas 1 atau di bawah 1. Selanjutnya dilihat kemungkinan adanya variabel interaksi pada variabel-variabel kandidat tersebut. Dari hasil pengujian ini ditetapkan model akhir dari regresi logistik ganda yang dilakukan (Hastono, 2007).
Langkah pertama adalah menentukan variabel yang masuk kriteria sebagai kandidat model yaitu variabel dengan nilai p < 0,25 dan nilai 95 % CI di atas 1 atau di bawah 1. Selanjutnya dilihat kemungkinan adanya variabel interaksi pada variabel-variabel kandidat tersebut. Dari hasil pengujian ini ditetapkan model akhir dari regresi logistik ganda yang dilakukan (Hastono, 2007).
Pemilihan Kandidat Variabel
Multivariat
Setelah dilakukan analisis bivariat
antara masing-masing variabel independen
dengan variabel dependen kemudian dilihat besarnya nilai p yang dihasilkan. Untuk variabel yang mempunyai nilai p < 0,25 maka variabel tersebut dapat diikutsertakan ke dalam model multivariat (Hastono, 2007).
dengan variabel dependen kemudian dilihat besarnya nilai p yang dihasilkan. Untuk variabel yang mempunyai nilai p < 0,25 maka variabel tersebut dapat diikutsertakan ke dalam model multivariat (Hastono, 2007).
Penyusunan Model Dasar
Sebagaimana diketahui bahwa analisis
multivariat bertujuan untuk mendapatkan model yang terbaik dalam menentukan
determinan variabel dependen maka semua variabel kandidat dimasukkan
bersama-sama. Model terbaik akan mempertimbangkan nilai signifikansi p-Wald (p <
0,05). Pemilihan model dilakukan secara hirarki dengan cara memasukkan semua
variabel kandidat ke dalam model kemudian dilihat nilai p-Wald, bila ternyata
nilai p-Wald tidak signifikan maka variabel dikeluarkan dari model secara
berurutan dimulai dari nilai p-Wald yang paling besar (Hastono, 2007).
Pengujian Interaksi
Setelah melalui kedua tahapan
tersebut selanjutnya dilakukan pemeriksaan
interaksi antara variabel-variabel yang secara substansi berinteraksi yaitu variabel yang secara teori diduga berinteraksi satu sama lain. Untuk menilai adanya interaksi menggunakan model perkalian (multiplikatif) dengan membuat variabel baru yang merupakan interaksi antara variabel independen yang satu dengan variabel independen yang lain yang masuk model. Selanjutnya variabel interaksi tersebut dimasukkan secara bersama-sama dalam analisis multivariat, kemudian dilihat nilai p-Wald dari variabel interaksi tersebut. Apabila p-Wald dari variabel interaksi tersebut ≥ 0,05 berarti tidak terjadi interaksi antara variabel maka dalam analisis selanjutnya tidak diikutsertakan dan dikeluarkan dari analisis interaksi demikian seterusnya sampai didapat adanya variabel interaksi dengan nilai p-Wald < 0,05 (Hastono, 2007).
interaksi antara variabel-variabel yang secara substansi berinteraksi yaitu variabel yang secara teori diduga berinteraksi satu sama lain. Untuk menilai adanya interaksi menggunakan model perkalian (multiplikatif) dengan membuat variabel baru yang merupakan interaksi antara variabel independen yang satu dengan variabel independen yang lain yang masuk model. Selanjutnya variabel interaksi tersebut dimasukkan secara bersama-sama dalam analisis multivariat, kemudian dilihat nilai p-Wald dari variabel interaksi tersebut. Apabila p-Wald dari variabel interaksi tersebut ≥ 0,05 berarti tidak terjadi interaksi antara variabel maka dalam analisis selanjutnya tidak diikutsertakan dan dikeluarkan dari analisis interaksi demikian seterusnya sampai didapat adanya variabel interaksi dengan nilai p-Wald < 0,05 (Hastono, 2007).
Terima kasih
ReplyDelete